
ELSEVIER Journal of Nuclear Materials 249 (1997) 231-238 

A model for hydride-induced embrittlement in zirconium-based alloys 

D. W~ippling a,b, A.R. Massih a,b, *, p. Sffthle h 

a ABB Atom AB, S-721 63 Viisterhs, Sweden 
b Luleh Universi~ of Technology, S-971 87 Luleh, Sweden 

Received 14 February 1997; accepted 30 May 1997 

Abstract 

The critical stress intensity factor for hydrided zirconium-alloys is calculated using a Dugdale type model for a finite 
crack. The hydride platelets are assumed to surround the ends of the crack. They are located in the process region of the 
crack tip. The model is used to calculate the temperature dependence of the critical stress intensity factor and the results are 
compared with measurements performed on Zr-2.5Nb and Zircaloy. The model in general describes the experimental data 
satisfactorily, nevertheless, it gives implausible results for a certain range of temperatures. The deficiency is attributed to the 
lack of appropriate constitutive relations for the hydrided zirconium-based alloys. © 1997 Elsevier Science B.V. 

1. Introduction 

Zirconium-based alloys are widely used in core struc- 
tural components of water-cooled and water-moderated 
reactors due to zirconium's low neutron absorption nuclear 
cross-section in thermal neutron energies. Examples of 
these components are fuel claddings and spacer grids in 
light water reactors, fuel channels in boiling water reac- 
tors, pressure tubes of CANDU ® nuclear reactors, etc. 

In light water reactors one of the main obstacles for 
extending the burnup of the fuel has been extensive hy- 
driding of Zircaloy cladding emanating from the metal 
water reaction during operation. Because of the technologi- 
cal importance of this phenomenon, hydrogen embrittle- 
ment of zirconium alloys has been studied extensively over 
the last three decades [1-3]. 

The formation of hydrides in Zr can have detrimental 
effects to mechanical properties, comprising tensile ductil- 
ity [1,3], fracture toughness [3], and ultimate fracture 
strength [4]. These studies show that the amount of ductil- 
ity degradation depends on hydride orientation, morphol- 
ogy, and distribution. Hydride platelets oriented normal to 
stress direction have been found to render large reductions 
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in strength and ductility of Zr-alloys, whereas hydride 
platelets oriented parallel to the stress direction have little 
effect. When hydride platelets are densely spaced they can 
cause brittle fracture, but ductile fracture occurs with 
sparsely spaced hydrides [1]. The conventional wisdom on 
hydride-induced embrittlement in Zr-alloys is that both the 
metastable, -y, and the stable, ~, Zr-hydride phases are 
intrinsically brittle at temperatures less than 150°C [1,5]. 
When tensile loads are applied at temperatures below 
150°C the hydrides that are oriented normal to the direc- 
tion of stress readily fracture and microcracks form in the 
hydrides that enhance the main crack propagation through 
the material. If a hydride is located at the tip of the crack 
this leads to a tractable path of crack propagation. Densely 
spaced hydride platelets are more damaging than the 
sparsely spaced ones because of the shorter distance for 
microcrack interlinkage. When a continuous hydride net- 
work is formed a brittle fracture mechanism in Zr-alioys 
occurs [6]. 

The subcritical fracture behavior of hydrided Zr-alloys 
can be characterized by the threshold (or critical) stress 
intensity factor in mode I [7]. Simpson and Puls [8] have 
observed that for sharp cracks, over a certain range of the 
stress intensity factors K I, the crack velocity is only 
weakly dependent on K r The threshold intensity factor, 
K~c, is defined as the limiting stress intensity value below 
which the crack velocity becomes vanishingly small. Any 
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crack subjected to a K~ less than Ki~ will not be able to 
propagate through the material. 

In this paper an analytical model for calculating a 
criterion for crack growth expressed in terms of" a critical 
stress intensity factor is proposed. 

A finite crack of mode I, located in an elastic body. is 
considered. It is assumed that a hydride platelet is located 
at the end of the crack and the crack propagation takes 
place through the hydride. The stress field in the hydride in 
the presence of the crack is calculated using the Dugdale 
model [9]. Shi and Puls [7], in contrast, considered a 
semi-finite crack, the tip of which ends at a hydride 
platelet. They assumed as Banks and Garlick [10] that in 
the immediate neighborhood of the crack tip the plastic 
zone size is given by rpz = b ( K i / 2 ~ r o  )2 where h is a 
proportionality constant and cry) is the yield stress of the 
material. Further, Shi and Puls postulated that in that zone 
the stress remains constant at its maximum value. 

The model considered in this paper and the results of 
model calculations are presented in Section 2. In Section 3 
we extend the model to treat the case of multi-hydride 
platelets. 

2 .  T h e  m o d e l  

Experiments indicate that zirconium hydrides formed at 
crack tips are platelets I11]. These platelets lie in, or close 
to, the crack plane. The purpose of the model developed 
here is to predict at what applied stresses the crack propa- 
gates through the hydride. Let us consider an infinite 
elastic body containing a crack of length 2 a under mode l 
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Fig. t, A body with a crack of length 2a contained at both ends 
with hydride platelets each of length L. 

loading located between two hydride platelets each of 
length L (Fig. I). 

We consider that the hydride platelet of length L 
covers the p r o c e s s  zone of length d with L > d. The 
process zone is a region characterized by microseparations 
such as voids or micro-cracks [12]. Under loading, the 
length of the process region grows, hence increasing the 
displacement at the crack tip until the limit displacement 
u" is attained. At this stage the process region is said to be 
fully developed, i.e., the crack grows under the constraint 
~r ,(u > u* ) = 0, with o-,, being the stress in the v-direc- 
tion. 

The model considered here (Fig. 1) is mathematically 
described by a boundary value problem in the theory of 
elasticity. More specifically, a linear elastic semi-infinite 
body, occupying the upper half plane y > 0, is subjected to 
a remote stress Cr, with the following boundary conditions 
on v - O: 

<r - , r  0 t b r x ~ [  a , a ] ,  ( l a )  

,r,,=,rd(6 ) and o-,,=o forlxl~la, a+d[ 
( l b )  

and 

= , m  [u , . (x ,  ,9  - " , ( x ,  - 3 ' ) ] ,  (2) 

where u, is the displacement in the v-direction and 61,: .... 
-= £, is called the crack tip opening displacement (CTOD). 
Further, 

u , = 0  and r r , , . = O  for I x [ ~ [ a + d ,  zo[. 

The stress intensity factor is defined through 

K I = lim 2 f f~ - , r , , . ( x ,  0), (3) 
~ + ( )  

where K~ is the mode I stress intensity factor. Upon 
employing the complex potential function .Q(z) for large 
I=t [13], we can write 

,r,, + ,r,, = 4 [ g Y ( : )  + fY(T:)], (4a) 

• ~ '  - _ -  ,Q, ,  - 
, r , ,  i ~ r , , = 2 [ # 2 ' ( z ) +  2 ( z ) + ( =  z) ( z ) ] ,  

(4b) 

where the complex function .Q(z) is holomorphic in the 
whole plane cut through the crack line. In Eqs. (4a) and 
(4b), z = x + i v  with i = x /  1, the prime denotes the 
derivative with respect to z, and the bar on top means the 
complex conjugate. It can be shown for the problem under 
consideration that K~ can be expressed as 

I 

h', = ( r ~ l / ~ a  + d )  

X cr d - - -  d ~ - j  %1/ - - -  d x / '  
(,, + ,:) ,, V a - ,,~ l 

(5) 
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Fig. 2. Crack tip opening displacement 6 r 

Since the problem is symmetric about the y-axis, i.e., 
0-d(X) = 0-d(--X), Eq. (5) becomes 

K I = 0-~¢w(a + d)  - 2 
x/a + d  

Ti" La+ d 

% d x  
× , (6) 

v'(a + d)  2 - x 2 

The CTOD for the geometry shown in Fig. 2 is [14] 

K + I  
~t = 2u,. = - - 0 - ~ ¢ ( a  + d)  2 - a 2 

4/z 

K + 1 a+d rldT1 o d~ 

where 

3 - 4v,  

K =  3 - v  

l + v '  

and 

E 

/ x -  2 ( 1 +  v ) "  

plane strain 

plane stress 

Here E is Young's modulus and v Poisson's ratio. 

(7) 

(8) 

(9) 

2.1. The Dugdale zone 

The simplest way to model the process region is to 
assume the magnitude of internal stresses is equal to the 
yield stress of material in that zone, i.e., we envision that 
fracture processes in the region d start at the onset of 
plastic deformation (the Dugdale zone) and that the contin- 
ued fracture process occurs at a constant stress. Hence with 
0"d(X) = constant = tr 0, where 0-0 is the yield stress, the 
integral term on right hand side of Eq. (6) gives the 
Dugdale zone stress intensity factor 

KI ° = - 2 arccos 
-n 1 - 2 u  

(plane strain), 

   oarccos( ) 
(10a) 

(plane stress). 

(lOb) 

This quantity must balance the stress intensity factor in- 
duced by the remote tensile stress K~ = 0-~¢~r(a + d)  
which yields 

d = a[sec(  " r r t r~ ( l -2v)  ] _ 1] ( l l a )  
20"0 } (plane strain), 

d = a [ s e c [ T r 0 - = ) - l ]  [ k20-o (plane stress). ( l i b )  

Using Eq. (7), the CTOD for this model is 

8(1 -- v 2) 0-0 
6, 

'rrE a ( l  - 2 v )  

( r r 0 - ~ ( l - 2 v ) )  (plane strain), (12a) 
lnsec 20-o 

8 (~0-~ 1 
6 ,=  Ir--~a0"o lnsec ~ o ]  (plane stress). (12b) 

Note that plane strain is obtained from plane stress by 
replacing % ~ O-o/(1 - 2v)  and E ~ E / ( I  - v2). 

2.2. Hydride stresses 

When hydride is formed in Zircaloy a volume expan- 
sion around the zirconium hydride takes place. The stress 
inside the hydride can be calculated considering a repre- 
sentative simple geometry for hydride platelets. We as- 
sume, as in Shi and Puls [7], that the hydride has a 
rectangular shape shown in Fig. 3. Further, the local stress 
in the hydride is the sum of externally applied stress with 
no hydride present, o -a, and a stress within the hydride, 
o-h, generated by the hydride formation process in the 
absence of extemal forces, i.e., ~r~o c = o ' a +  O h .  

When the hydride length is much larger than its thick- 
ness, i.e., L / t  >> 1 using the method of Chin [15], an 
analytical expression for o "h can be obtained. Now by 
ignoring the free surface effects at the crack and assuming 
that there is only a non-zero initial strain Gy = e ± ,  the 
analytical expression for 0- h is [7] 

0-h 2~- i -_ - - ;2  ) 2arctan 1 + 4 s 2 / t  2 ' 

(13) 

where s is the distance from the front end of the hydride, 
at the crack tip, towards the center of the hydride. 

L 
Hydride 

Crack tip 

Fig. 3. Geometry of a hydride plate located at the crack tip. 
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For s >> t one can show' 

E~__ 1'2) ([).,, (r h 4,rr i i  s >> t (14)  

Numer ical  comparisons between Eqs. (13) and (14) 
reveal that the approximate expression in Eq. (14) is fair 
for s > 0.3t. 

2.3. Fracture  criterion 

The aim is to determine at what level of  applied stress 
the hydride will crack. We assume that the hydride cracks 
when 

~ r , ,  + ~r h = ~rlt,, ( 15  ) 

where tr~ t' is the fracture stress for the hydride. Since the 

stress in the hydride for plane strain is ¢r>:. = trail( 1 2 v ). 
utilizing Eqs. (13) and (15) we can write 

(rt"~ 1 2v  2 r r ( l  - v 2 2arctan 

2 s/t ] 
1 + 4 s 2 / t  2 = ' r th  (16)  

where (r,,~ = ~r,, + (r h is the local stress in the hydride. 

For s >> t Eq. (16) can be simplified as 

cr o Ee  ~ l 
- ¢h I~, s >> t (plane strain),  

1 2 v  4 ' n - ( 1  - v 2 )  s 

( 1 7 a )  

and for plane stress we have 

Eg, t 
rro - ~rrh, s >> t (plane stress) .  ( 17b) 

4"rr s 

One may re-express the hydride fracture criterion in 

terms of  the stress intensity factors, that is to say, when K~ 
reaches a critical value K k. fracture will occur. The maxi- 
mum local stress ,r],,c occurs in our model at .~= d 
whereas for e las t ic-plas t ic  material such as zirconium the 
Rice and Johnson ' s  [16] analysis gives s = 2 6, as the point 
where maximum stress occurs. 

In sequel, confining our analysis to the region s >>t 
(see Fig. 3) Eq. (17a) gives 

EIg  • 

s =  4 w ( 1  -- v e ) [ , r o / ( 1  - - 2 v ) - - , r r  h] " (18 )  

Lett ing s = d and replacing tr, wi th K k / ¢ w a  

2 (ro ~¢~aa 
Ki~ 

~(I  2v)  

l/( )1 arccos I I +  4 ~ r a ( l  u 2 ) ( , r , , ~ i l  2 u )  , r ,h ) ,  

for .~ = d,  ( 19 ) 

whereas setting s = 26, with ~ = KI~/~ yields 

2 oo ~¢~a 
K j, 

v ( 1  - 2 v )  

a r c c o s [ e x p { -  E2t,~: ± ( l 2 v )  

lot  x - 2 8 , .  ( 2 0 )  

If ~z << (E~ Eqs. (19) and (20) can, respectively, be sirn 

plified to 

Ki2c = 2Et t :  ~ tro 

v ~ ( I  - v2)  1 - 2 v  

Jbr s - d a n d  G <<  fro,  

and 

K~ =.E2I , :~  [8Tr ( l  _ v 2 ) 2 (  l 
1 - - 2 / '  

f o r s = 2 6 ,  and ~x, <<<r o 

1 
(21) 

.h) ] 
(] - 2 ~ )  . 

O" o 

(22)  

Eqs. (19)- (22)  apply to plane strain conditions. In 
Dugdale ' s  plane stress formulation. Eqs. (19) and (20) are 
replaced as follows: 

K k =  - -  W 

for s = d, 

and 

Kk 

"iT 

to t  s - 2 6,. 

4~. ( ,~o  <h) , 

(23) 

- -  arccos exp 64(r°a  ( o.l---- ~ -_ (r,h) , 

(24) 

If (r_ << (r 0, then Eqs. (21) and (22) can be written as 

K(c = 2Eta: : ~r u 7r a 1 - -  , 
(r() 

for .~ - d,  ,r, << ~r 0 . (25)  

for .~ 25, ,  ~r, << (r,i. (26)  
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Table 1 
Material data for Zr-2.5Nb [7] (T in K) 

E = 95900-  57.4(T - 273) (MPa) 
v = 0.436-4.8>( 10 -4 (T-300)  

• = 0.054 
cr o = 1088- 1.02T (MPa) unirradiated 
~r o = 1388- 1.02T (MPa) irradiated 
~rf n = 7.357 × 10- 3E (MPa) 

Our motivation rests on the assumption that the fracture 
condit ion is best  described as plane strain. However ,  the 
fracture process,  i.e., microcracking,  is understood to occur 
on several planes simultaneously. The irregular geometry  
of  the hydride grains initiate microcracks perpendicular  to 
the crack plane, thus locally relieving the tri-axial stress 
state. 

2.4. Analysis 

12.5 - 

10-~°°°Oo o 

7.5. ~ ~ Eq. (23), unirrad. 
/ 

.~ o Eq. (23), irrad. 
5 -  

o Eq. (24), unirrad. 
I 

Eq. (24), irrad. 
2 . 5  ~ ~ 4 ~ o ~ 1 ~ , 1 1 ~ o ~ o o ~ o , ~ 1 . o o ~  

0 I I I 
300 400 500 600 

Temperature [ K] 

Fig. 5. Critical stress intensity factor using the exact solutions of 
the plane stress model (Eqs. (23) and (24)) versus temperature. 

The stress intensity factor measured at different temper-  
atures has been collected for Z r - 2 . 5 N b  by Shi and Puls 
[7]. The model  presented here can be used to predict  the 

temperature dependence  of  K ~  using the data listed in 
Table 1 and a hydride thickness o f  t = 2 Ixm. In Fig. 4 we 
have plotted KI~ for the approximate Dugdale-l ike model  

at s = 2 6 t and s = d (Eqs. (25) and (26)) as a function of  
temperature.  It can be seen that Kic increases with temper-  
ature until o'~ = o" 0 where  Eqs. (25) and (26) became 
singular. Irradiation will reduce Kx~ as is expected.  How- 
ever, the model  shows that the effect  o f  temperature on 
K~¢ is insignificant or for that matter it gives an implausi- 
ble result. 

The associating exact  expressions (Eqs. (23) and (24)) 
for a = 60 Ixm are plotted in Fig. 5. It is seen that for 

70-  o 
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40 
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I 
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Fig. 4. Critical stress intensity factor in plane stress condition, 
using Eqs. (25) and (26) versus temperature for ~ << ~0. 

unirradiated material for s = 2 6t, Ktc decreases with tem- 
perature, obviously a peculiar behavior,  whereas for s = d 
this temperature dependence  is plausible. 

The large values for Klc observed in the figures may be 
a reflection of  the fact that at temperatures above 250°C 
the fracture process is moved from hydride phase to the 
matrix phase. 

2.5. Model with mixed plane condition 

The results obtained from the model  presented in the 
preceding section did not satisfactorily describe the tem- 
perature dependence  of  the stress intensity factor in neither 
the plane stress or plane strain conditions.  In this section 
we formulate the problem for a mixed plane condition, 
namely we assume that fracture occurs at the point s = d 
(or s = 2 6 t) in the plane stress state, whereas the stress in 
the process zone is considered to be in the plane strain 
condition. The critical stress intensity factors are hence 
derived to be 

g t c  - -  

arccos 1 1 + 4 ' n ' a ( l  - u2)(O-o/(~l - 2 v )  - o-f h) ' 

for s = d,  (27)  

- - a r c c o s  exp - - E 2 t g ±  
"Tr 

for s = 2 8,. (28) 



In case of  ~r, << (r 0` Eqs. (27) and (28) are approximated 

( f)l I - u 2 )  I - 2 v  ( r  0 

by 

for s =  d, 

K~.=E2t~:=/[gTr (  I 

for s = 2 6,. 

('  )] / / . 2 )  _ _  S T i l l  . 

1 -- 2 p ( r  o 

(29)  

5 -  

(3o) 

2.6. Calculation results 

Equations derived in the previous section for the mixed 
plane condition can be used to predict the temperature 
dependence of  Kk.. In Fig. 6 we present the result o f  
calculations carried out by employing Eqs. (27) and (28) at 
s = d and s = 2 6,, respectively, where we assumed t - 2 
Ixm and the data in Table 1. The plots show tenable trends. 
i.e., K k, increases with temperature while neutron irradia- 
tion lowers K~  (only for s = 2~,). The associating ap- 
proximate relations Eqs. (29) and (30) offer values quite 
close to Fig. 6 and hence could alternatively be utilized. 

We should note that s = d does not satisfy the condi- 
tion s >> t (for the obtained values of  K~¢), which was 
imposed to simplify the expression for the fracture stress 
of  the hydride, and subsequently used in the derivations of  
the expressions for Ku.. Similarly, this condition does not 
hold at s - 2 ~ ; ,  for a large portion of  the temperature 
interval. This implies an underestimation of  K>. One way 

g, 

"r. 
¢3 

6 -  

5 -  
-,D..~..# .o ~ o..,D.e..t~.., ~ . 

"m ~"~" m~'m ~ ~- , ,  ~ ..m ~ .  ~ , ~ . . . . ~  ~i " . . . . . . . .  . . i __:  

3 - ~ "  m-  

2 . . . . . . .  

1 . . . . . . . . . . . .  
. . . . . . . . .  r . o . .  

0 

T e m p e r a t u r e  [ K ]  

- -  u n i r r a d i a t e d ,  s : , l  . . . . . . .  i r r a d i a t e d  s=d - - - m -  - K t h l n m ' a d ~  

- -  u n i ~ a d i a t e d ,  ~=25 t . . . . . . .  i ~ a d i a t e d  s=25 t - - ~ . . . .  K t qlvrmt, 

Fig. 6. Temperature dependence of the model with mixed plane 
conditions. K t = ! /~  15Eo)J. 
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Fig. 7. Temperature dependence of critical stress intensity factor 
employing Eq. (32). 

to consider this condition is to obtain the relation for ~r h 

for small s, 

- E ~  1 
,r h (31) 2(l-v2)(2-rrs/t+e 5.4,/,) 

If we employ Eq. (31) we obtain at s - 2 6, the follow- 
ing expression for the critical stress intensity factor: /[ { , ,,h)] 
K~. = E 2 t ~  8"rr(I -- p2)  I 2/2 ~r o 

( E ~ r , , t e ' " a A ~ / ' " " ' ) / 4 w ,  at s : 2 6 , .  (32) 

Eq. (32) is a transcendental equation for K~, which 
may be expressed as 

1 0 8  I 
e 

4-rr 

where 

K ~2. 

Et(r o 

(33) 

(34)  

] ell .h ) ] 
I t ' 2 )  1 - 2 u  (r( i  (35) 

Eq. (33) has solutions for x provided ,~ />  l /4av .  This 
implies that, using the data listed in Table l, K k can be 
determined for T > 380 K for unirradiated and T > 460 K 
irradiated material, respectively. Plots o f  K k. versus tem- 
perature are displayed in Fig. 7. 

We should note that since Eqs. (28) and (30) are valid 
tbr s >> t (s' > 0.3t),  they are applicable when 

~, >_ (~.]sm~,,t. (36) 

where we have used 6, = K~JEo-I). 
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12 

eq (13) 

.......... eq (14) 

. . . . . . .  eq (31) 

10- ! 

8 -  : 

P 
g 

6I 

.~ , -  
o 4,- '~ Z '\  \ 

2 - " ' : " : ~  

0 
o o:5 1 x:5 ~ 2:5 3 

2s/t 

Fig. 8. Stress in the hydride platelet versus distance from the crack 
tip using different approximations. The normalized stress is 2(1 - 
u:~)lo" hl/Ee z , 

To see the accuracy of the utilized approximations we 
have plotted 2 ( 1 -  u2) l ( rh l /E~± versus 2 s / t  as pre- 
dicted by Eqs. (13), (14) and (31) in Fig. 8. It is seen that 
for s > 0.3t the three equations give the same results. 

The results presented in Fig. 6 show that for irradiated 
and unirradiated materials, Eqs. (28) and (30) are accurate 
only for temperatures above 500 and 600 K, respectively, 
whereas Eq. (32) with the data in Table 1, is applicable to 
temperatures above 380 and 460 K for unirradiated and 
irradiated materials, respectively. The reason for this re- 
striction could be due to the material property data (Table 
1) used for the yield stress and Poisson's ratio. The 
applicable data should be for zirconium hydride in the 
considered zirconium alloy rather than for the matrix 
(Zr-alloy) properties. However, to our knowledge, such 
data are not available in literature. We expect the hydride 
yield stress to be lower than the yield stress value utilized 
here. A lower value for the yield stress somewhat increases 
the values for Ktc and at the same time extends the 
validity of Eq. (32), thus eliminating the unphysical nega- 
tive KI¢ region. 

3. Multi-hydride platelets 

A hydrided zirconium-based alloy comprises many hy- 
dride platelets. The formation of multi-layered hydrides at 
the front of the crack tip and uneven coverage of hydrides 
across and along the crack tip can affect the value of Kic 
considerably [7]. The critical stress intensity factor for 
multi hydride system may be written as 

KIH = f g t c  -]- (1 - f ) K I ~ ,  (37) 

where KI~ is the crack initiation threshold for a zirconium 
alloy containing no, or very low, area fraction of coverage 

10- 

5- 

• experimental 

.......... f=0.85 
f=0.90 

. . . . .  f=0.95 . . . . . . . . .  

. . . . . .  

0 i 

350 ~0 & ~0 ~0' 

Temperature (K) 

Fig. 9. Multi-hydride model (Eq. (37)) applied to Zr-2.5Nb with 
material properties given by Shi and Puls [7]. Critical stress 
intensity factor versus temperature for different hydride concentra- 
tions, where f is the area fraction of hydride coverage in the front 
of the crack tip. 

of hydride platelets, f is the area fraction of hydride 
coverage in front of the crack tip, and Ktc is the single 
platelet stress intensity factor discussed in the preceding 
sections. Experimental data obtained by Huang [17] indi- 
cate that 

Z r  K,c - 30 + 0 . 0 4 5 ( T -  300), (38) 

where T is the absolute temperature. 
We have used Eqs. (30), (37) and (38) to predict KIH 

as a function of temperature for Zr-2.5Nb for different 
values of f (Fig. 9). The experimental data [8] are also 
depicted in this figure. If Eq. (32) were used instead of Eq. 
(30), the agreement with experimental data would improve 
at lower temperatures. 

3.1. Application to hydrides in Zircaloy 

The model for the mixed plane condition presented in 
Section 2.4 is applied to hydrides in Zircaloy to predict the 
temperature dependence of the fracture toughness. The 
material property data used in this calculation is presented 
in Table 2. The fracture stress for hydride is assumed to be 

Table 2 
Material data for Zircaloy (T in K) 

E = 97800- 58(T - 273) (MPa) Zircaloy-2 
u = 0.436- 2.48 X 10-4(T - 298) 
o" 0 = 803 -0.652T (MPa) unirradiated, fully-annealed Zircaloy-2 
o- 0 = 1075 -0.870T (MPa) irradiated, fully-annealed Zircaloy-2 
t = 2 ( ~ m )  

± = 0.054 
o'f h = 7.357 x 10 3195900- 57.4(T - 273)] (MPa) Zr-2.5Nb 



238 D. Wiippling et al. / Journal o/Nuclear Materials 249 (1997) 231--238 

~o ] -  9 
mult i  hydride model 15 

, , ,  

. . . . . . .  s ingle hydride model ..,,"" 

8 - <> exper imenta l  0 "" ' /  

Temperature  IKI 

Fig. 10. Temperature dependence of the critical stress intensity 
factor KI, tor irradiated and hydrided, Nlly annealed Zircaloy-2. 

factor tk)r both irradiated and unirradiated material (at 
- d  and s = 26~) increases with temperature. However,  

the applicable equations are valid only for temperatures 
above 450 and 550 K tk)r unirradiated and irradiated 
materials, respectively. We believe the main cause of  these 
deficiencies in the model lies in the lack of  appropriate 
experimental  data to formulate adequate constitutive laws 
for hydride zirconium system. Nevertheless,  the mixed 
plane theory has been applied to the case of  multi hydride 
platelets. The agreement  with experimental  data (the criti- 
cal stress intensity factor vs. temperature) on Z r - 2 . 5 N b  are 
satisfactory. For Zircaloy such data are not directly avail- 
able. The model at best gives a conservative estimate (i.e.. 
a lower bound) of  the three data points available to us. 

Our evaluation shows that for developing a mechanist ic 
fracture criterion ['or hydrided Zircaloy, basic mechanical 
property data (constitutive relations) in the temperature 
range of  interest (300 to 600 K) are sine qua non. 

Acknowledgements 

the same for Zircaloy and Zr 2.5Nb since in literature we 
could not find this value for Zircaloy. 

Using Eqs. (30) and (37) with / =  0.95. and the data 

presented in Table 2, we have plotted K m as a function of  
temperature for both a single hydride and mult i-hydrides in 
Zircaloy-2 in Fig. 10. In the same figure we have plotted 
three available experimental  points [18]. It is noted that, 
although Eq. (30) is crude in the considered temperature 
range, the results are not totally inadequate. The increase 
in temperature of  K m is quite weak compare with the 
experimental results, but this could be due to the unsatis- 
factory description of  the temperature dependence of  Pots- 
son 's  ratio (Table 2). Also, there is a need for experimental  
data on yield stress and Poisson ' s  ratio of  the hydride in 
Zircaloy, as we discussed in the previous section. 

4. Conclusion 

in summary,  we have applied the Dugdale model to 
calculate the critical stress intensity factor for the onset  of  
crack propagation in hydrided Zr-alloys. Calculations per- 
formed for long hydrides located at both ends of  a finite 
length crack show that for unirradiated material in plane 
stress condition, the critical stress intensity factor increases 
with temperature until the fracture stress becomes equal to 
the yield stress at which K k becomes singular. For irradi- 
ated material K~,, is a decreasing function of  temperature 
which is an implausible result. 

A mixed plane model where plane stress is assumed at 
s - d (or s = 26 I) while plane strain condition is consid- 
ered in the process region offers a more plausible result 
than the former models,  i.e., the critical stress intensity 
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